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The Lagrangian L for gravity waves of finite amplitude in an N-layer, stratified shear 
flow is constructed as a functional of the generalized coordinates 4,(t) = {&( t ) }  of 
the N +  1 interfaces, where the q; are the Fourier coefficients in the expansion of the 
interfacial displacement vy(x ,  t )  in a complete, orthogonal set { I l / n ( ~ ) } .  The explicit 
expansion of L is constructed through fourth-order in the q; and q,. Progressive 
interfacial waves and Kelvin-Helmholtz instability in a two-layer fluid are examined, 
and the earlier results of Drazin (1970), Nayfeh & Saric (1972) and Weissman (1979) 
are extended to finite depth. It is found that the pitchfork bifurcation associated with 
the critical point for Kelvin-Helmholtz instability, which is supercritical for infinitely 
deep layers, may be subcritical (inverted) for finite depths. The evolution equations 
that govern Kelvin-Helmholtz waves in the parametric neighbourhood of this 
critical point are shown to be equivalent to those for a particle in a two-parameter, 
central force field. The effect of surface tension is examined in an Appendix. Finally, 
the wave motion forced by flow over a sinusoidal bottom (as in Thorpe’s tilting tank) 
is examined and the corresponding resonance curves and Hopf bifurcations 
determined. Numerical integrations reveal that stable limit cycles exist in some 
parw7etric neighbourhoods of these bifurcations. Period doubling was observed but 
did not lead to chaotic motion. 

1. Introduction 
I consider here a Lagrangian formulation for weakly nonlinear gravity waves in 

an N-layer, stratified, inviscid, incompressible shear flow with special reference to the 
Kelvin-Helmholtz problem for a two-layer fluid of finite depth. The formulation 
follows that for internal waves in a stratified fluid (Miles 1986); in particular, a 
velocity potential exists for each layer by virtue of the uniformity of both density 
and velocity therein. Surface tension, which is omitted in the body of the text, is 
incorporated in Appendix A. 

Weakly nonlinear Kelvin-Helmholtz (K-H) waves in an unbounded fluid have 
been considered previously by Drazin (1970), Maslowe & Kelly (1970), Nayfeh & 
Saric (1972), Weissman (1979) and Saffman & Yuen (1982). Full nonlinearity has 
been examined by Saffman & Yuen (1982) and Yuen (1984), using numerical 
methods. The present work is closely related to that of Drazin, Nayfeh & Saric and 
Weissman. 

Drazin (1970) focuses on the transition to K-H instability and imposes the 
Boussinesq approximation. He includes surface tension, but the Boussinesq approxi- 
mation suppresses the effects of a possible resonance between a gravity-capillary 
wave and its second harmonic. He deduces from Squire’s theorem that waves moving 
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in the direction of the basic flow are more unstable than oblique waves and therefore 
dominate the transitional rbgime [but this does not hold for strong nonlinearity 
(Yuen 1984)l. He examines the possible limit cycles in the transitional regime on the 
hypotheses of slowly varying amplitude and constant phase and concludes that they 
are stable. 

Nayfeh & Saric (1972) extend Drazin’s (1970) work by eschewing the Boussinesq 
approximation and allowing for spatial, as well as temporal, modulation. They first 
consider stable progressive wave, extending the results of Maslowe & Kelly (1970) 
by obtaining the second-order modification of the wave speed. They then consider 
the K-H stability problem for wavenumbers close to that of the minimum wave 
speed (for which gravity and capillarity are equally important). They examine two 
classes of limit cycles in the transitional regime on the hypotheses of slowly varying 
amplitude and constant phase and find that capillarity may render one of these 
classes unstable. 

Weissman (1979), like Nayfeh & Saric, allows for both spatial and temporal 
modulation and focuses on the neighbourhood of K-H instability. He gives extensive 
results for wave packets, including, for example, solitary waves. Proceeding from the 
same hypotheses as those of Nayfeh & Saric, he finds four (in contrast to one/two 
for DrazinlNayfeh & Saric) classes of limit cycles. 

I begin the present development, in $2, by extending my earlier calculation of the 
Lagrangian for a laterally unbounded, N-layer fluid to incorporate uniform flows in 
the individual layers, which are characterized by their depths, densities and 
velocities, d,, p, and U,, v = 1,2,. .., N .  I expand the displacement of the vth 
interface and the velocity potential in the uth layer in the complete set of normal 
modes exp(ik;x), determine the coefficients in the expansion of the velocity 
potential, $,, in terms of the modal amplitudes of its bounding interfaces through 
the variational requirement SL?/S$,, = 0, and neglect terms of fifth and higher order 
in the modal amplitudes in the Lagrangian (in keeping with the hypothesis of weak 
nonlinearity). In 5 3, I apply the general formulation to two-dimensional progressive 
waves at  the interface of a two-layer fluid with rigid upper and lower boundaries, 
for which the first approximation has the form 7 = A cosk(x-ct), where c = c ( k )  is 
determined by the usual K-H dispersion relation. Weak nonlinearity generates a 
second harmonic of the form kA2 cos2k(x-ct) and augments the wave speed by a 
term proportional to Ck2A2, where the dimensionless parameter C may be either 
positive or negative. The present results extend those of Nayfeh & Saric (1972) by 
providing the dependence of C on the layer depths; in particular, they reveal that 
C, which is positive-definite for gravity waves on an interface between layers of depth 
much larger than the wavelength, may be negative for sufficiently shallow layers. (As 
Nayfeh & Saric were the first to point out, it also may be negative for capillary-gravity 
wave8 on an interface between infinitely deep layers.) This result, which is not 
unexpected, corresponds to that of Keulegan & Carpenter (1961) for internal waves. 

In  $4, I examine the parametric neighbourhood of K-H instability for an 
arbitrarily prescribed wavenumber (in contrast to the formulations of Nayfeh & Saric 
and Weisaman, wherein the wavenumber is assumed to approximate that of the 
minimum wave speed for a capillary-gravity interfacial wave). The end result is a 
pair of second-order differential equations for the slowly varying amplitude and 
phase of the marginally stable (or unstable) interfacial wave. These normalized 
equations contain two parameters : B, which is a measure of proximity to the neutral 
curve in the parameter space, and y ,  which is the sign of the aforementioned 
parameter C at the proximate point on the neutral curve. They are analogous to the 
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equations governing the motion of a particle in a central force field that is described 
by p and y. They are integrable in terms of elliptic funct,ions, but the stable motions 
are only quasi-periodic (the periods of the amplitude and phase are unequal), in 
consequence of which the phase-space trajectories are not closed. These results 
generalize those of Drazin (1970), Nayfeh & Saric (1972) and Weissman (1979), all 
of whom obtain integrals only for the special case of constant phase, for which the 
motion is simply periodic. 

The progressive wave of $3 is a fixed point of the differential equations of $4 in 
a three-dimensional phase space (the phase angle in the four-dimensional phase space 
being ignorable). It is stable for all amplitudes (subject to kA 4 1) if C > 0, but only 
for a limited range of amplitudes if C < 0. 

These last conclusions remain valid in the presence of weak (linear) damping, 
which I introduce in $4. However, damping renders the evolution equations 
non-integrable. 

In  $5,  I consider the stationary wave forced by flow of a two-layer fluid over a 
sinusoidal bottom, as in the experiments of Thorpe (1968) and Altman (1985).t There 
then is a third parameter, a, which meaaures an appropriately defined mean value 
of U (which is eliminated in $4 through transformation to a reference frame moving 
with that mean velocity). I also include damping, which introduces a fourth 
parameter, 8. The resonance curve of amplitude versus /? is triple-valued in some 
range of /3 if la18 is sufficiently small and comprises both stable and unstable fixed 
points of the corresponding evolution equations. The intermediate branch, which lies 
between the turning points of the triple-valued curve, is unstable, just as in the case 
of a linearly damped Duffing oscillator (Stoker 1950, pp. 90-96). The upper/lower 
branch is stable for y = f 1, but, in contrast to the Duffing analogue, the lower/upper 
branch may comprise both stable and unstable fixed points. The division between 
stable and unstable fixed points on these branches are Hopf bifurcations, of which 
there may be 0, 1, 2 or 3. Numerical integration of the evolution equations for the 
slowly varying amplitude and phase reveal that limit cycles may emerge from these 
Hopf bifurcations. The numerical integrations also revealed period doubling and 
quadrupling in the parametric evolution of the limit cycles for y = + 1 (although not 
for y = - l ) ,  but neither period-doubling cascades (with finite accumulation points) 
nor chaotic solutions were obtained. 

The investigation in $ 5  was undertaken in connection with the experimental work 
of Altman (1985). It is hoped that his results, together with a comparison with the 
present theory, will be published soon. 

The joint limit N ?  co and d ,  40 yields the Lagrangian density for a continuously 
stratified fluid (cf. Miles 1986, $6). Unfortunately, the coefficients in this formal 
model contain divergent integrals in consequence of the singularity at the critical 
layer. The resolution of this difficulty appears to require a rescaling in the neigh- 
bourhood of the critical layer and perhaps also the introduction of diffusive interior 
layers; see Stewartson (1981) and references cited there. 

t The basic flow in them experiments is induced by tilting the wave tank. This flow is accelerated 
while the tank is tilted, and the present formulation is applicable only after the tank has been 
restored to a horizontal position and the basic flow is approximately uniform. The present 
formulation can be generalized to accelerated flow, but the transition to K-H instability then 
corresponds to a turning point of the linear differential equation, and weak nonlinearity is likely 
to be dominated by acceleration. 
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2. Lagrangian for layered fluid 

form N 

The horizontally averaged Lagrangian for an N-layered fluid may be placed in the 

2 = x P , ~ l ~ ~ , ~ 4 , ~ ~ , , - 1 ~ 4 , , - ~ ~ ~ , , ~  U"), (2.1) 
v = 1  

where: p,, d ,  and U,, are the density, undisturbed depth and ambient velocity 
(horizontal) for the vth layer; q, = {qY,(t)} is the set of generalized coordinates defined 
by the Fourier expansion of the displacement of the vth interface (v = 0, . . . , N) 

~, (x ,  t )  = q;(t)  eikSnx; (2.2) 

the exp (ik;x) form a complete set of normal modes in the horizontal and occur in 
complex-conjugate pairs, k ,  = - k ,  and qn = q:, and, here and subsequently except 
as noted, the repeated index n is summed over the complete spectrumt; 
pLl(q+,4+,q-,4-;d,  U) is the corresponding Lagrangian for a single layer of fluid 
for which q* is the generalized coordinate of the upper/lower surface. L, may 
be obtained from the corresponding result for U = 0 through the Galilean 
transformation 

(2.3) Qnf(t)+ (d"t -+ik,  U 1 q:(t)  = p : ( t ) .  

The end result is [Miles 1986, equations (3.10), (5.2)-(5.4)] 

2 4  = SmnCan@k pi-2Sn ~k P,+P, p i ) - g ( q k  q i - q i  qi)I  

+ dlmn{q?PkPi - q t p i p ,  + a m  an(km*kn) [$@2 - S m P , )  @i -SnPi) 

- q t @ ; - S m P L )  @, - f in  p i ) ] )  + Smn a n ( r t  r i  +2Sn rk r i  +r ,  r,) 

+ ~ j , m n { k ~ a r n [ P i + q ? ( S n ~ ~ ~ n - S m  ~ , ~ : ) + q T q t ( S n ~ , ~ i - - S r n  P ~ P ~ ) I  
+ ( a m + a n ) ( k m . k n ) [ q ; + q f ( p ~ - - m ~ , ) ~ i + q ~ q l @ i - S m ~ + , ) ~ n I } ,  (2.4) 

- 1 - 1 
where S,, = for k, i- k,  T 0 ,  &lmn = for k, + k ,  + k,  5 0 (2.5a, b )  

and similarly for Sj lmn,  

a ,  = ( k ,  tanh k ,  d ) - l ,  k ,  = IkJ, S ,  = sech k ,  d ,  (2.6a, b, c) 

rf = - S l m , a m k m ~ k , q f @ ~ - S m p ~ )  (n not summed). (2.7) 

The configuration of a single interface with rigid, plane upper and lower boundaries 
is obtained by setting N = 2, q,, = q2 = 0, q1 = q,  p l ,2  = p T ,  dl,2 = d ,  and Ul,2 = U ,  
in (2.1), which then reduces to 

9 = p+ L,(O,O,q,4;d+, u+)+p-  Ll(q,4,0,0;d- ,  u-). (2.8) 

Substituting (2.4) into (2.8), truncating at  n = +2,  which is consistent with the 
quartic approximation to L, on the hypothesis that kq, = O(knq:), and neglecting 
O(kaq;), we obtain 

2 = P&l Pl  P: + a 2  P2 Pz* f s ( q l 9 :  +!I2 n 3  
T$P+ k: a;) (qz* Pl+q,P:2)  T (1 -a1 a 2  kl.k2) (QIPlPz*+q: P:P2) 

+la 2 1 k2( 1 !I1 2 Pl * 2 +  Q1 *2 PI) 2 + [a? a2(kl'kz)z - 2% kfl Q141* Pl  p:>*y (2.9) 

t The index n is an abbreviation for a couplet of indices, say (n,,ny), for three-dimensional 
problems, in which x = (r,y) and k, = (n, k,,n,k,). Only two-dimensional problems, in which 
k, = (nk, 0) ,  are considered below. 
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wherein the & subscript now refers to the upper/lower layer, d = d, and U = U ,  
in the evaluation of a, and p, in the upper/lower layer, and summation over the 
vertically ordered, alternative signs and subscripts is implicit. 

3. Interfacial progressive waves 

has the form q = A cos k(z-ct) with kA 4 1 ,  we posit 
Considering a progressive wave of permanent form for which the first approximation 

k ,  = (nk,O), q, = k-lA, e-inkct (n = + I ,  + 2 ) ,  (3.1 a, b )  

where A ,  and A, are dimensionless amplitudes that (in this section) may be taken 
to be real without loss of generality. Substituting (3.1) into (2.3) and (2.9), we obtain 

Y = p,  k-'{TT].(U, -c)'[A:+ ( 1  + P,) A:]& (g/k) (A:+ A:)  

+ ( 3 T 2 - 1 ) ( U k  -c ) 'A:A2- (2T; ' -T-~) (U ,  -c)'A:}, (3.2) 

wherein the conventions of (2.9) apply and 

T* E tanhkd*. (3.3) 

Requiring .Y to be stationary with respect to independent variations of A, and A,, 
solving the resulting algebraic equations for A ,  and c ,  neglecting O(A:), and invoking 
A ,  E ikA,  we obtain 

- 
c = U & [ C ~ ( ~ + + C ~ ~ A ~ ) + P - U P $ ,  

wherein 
(3.5) 

p+(2T;' - T;') (U+ -c)' + p - ( 2 T 1 -  T?) (U-  -c), + B2b+ T+( U+ -c), +p-T-( U- - c)'] 
C =  

p+ !q'( u+ - c),+p- TI1( U- - c) ,  
(3.7) 

(3.8) 

The corresponding interfacial displacement, obtained by combining (2.2) and (3 .1) ,  
is 

The fmt approximation to c is obtained by neglecting k2A2 in (3.5). The second 
approximation is obtained by substituting this first approximation into (3.4) and 
(3 .7)  and then substituting the resulting approximation to C into (3.5). 

Kelvin-Helmholtz instability occurs for IU+- U-I > C', (so that the wave speeds 
given by (3 .5)  are complex), where 

7 = A cos k(z-ct)+ikAPB C O S ~ ~ ( Z - C ~ ~ ) .  

The values of B and C for I U+ - U-I = U ,  (which implies c = 0) are 

(3.10a, b )  

We remark that dV,/dA2 3 0 for C ,  3 0 and that the corresponding pitchfork 
bifurcation at F-P = cf is supercritical/subcritical (normal/inverted). C, is not 
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generally positive-definite; e.g. C ,  = 2 - TP2 for p+ x p- (the Boussinesq approxima- 
tion) and d+ = d- = d, which implies C ,  < 0 for kd < 0.881. If kh, $ 1, C ,  = 1 + B2, 
is positive-definite; however, this does not hold if surface tension is admitted, in 
which case (see Appendix A) C,  not only may be negative but also may be singular 
(along with B,) in oonsequence of resonance between a gravity-capillary wave and its 
second harmonic. 

Letting kh+ .f 00 (T+ .f 1) in (3.4)-(3.8), we recover the results of Maslowe & Kelly 
(1970), Saffman & Yuen (1982) and, after incorporating surface tension (see Appendix 
A) and correcting a typographical error in their equation (3.26), Nayfeh & Saric 
(1972). 

Linear damping may be modelled in the present problem by introducing the 
dissipation function 

9 = DP* a*@lP:)* ( 3 . 1 1 ~ )  

= D(P+ a+ + P- a-) [@I @T + ikU(ql 4: -a: 41) + k 2 P q 1  q:l, (3.1 1 b) 

where D is a positive damping constant that is assumed to have the same value in 
the two layers (if this assumption is not satisfied the weighted averages of U ,  and 
UZ, will differ from D and in (3.1 1 b)). The equation of motion for q1 then becomes 

(3.12) 

which implies the introduction of -i(D/2k) on the right-hand side of (3.5) and of 
- (D/2k)2 in the radical therein. 

4. Kelvin-Helmholtz instability 
We now examine the parametric neighbourhood of IU+- U-( = U,, positing 

q,(t) = dnlk-lA,(7) e-inkut (n = f 1, & 2), 7 = eIC+Jikcl t (4.la,  b )  

on the hypotheses that A,, 7 and 
C;+F-vZ 

dC, 14 
are O(1) as €40. The introduction of the scaling factor lC,l, as given by (3.10b), in 
(4.1b) and (4.2) simplifies the subsequent development (the problem is linear in the 
present approximation if C,  = 0). Note that A, is rescaled vis-&via A, in $3 and now 
is (in general) complex. 

Substituting (4.1) into (2.3) and (2.9) and invoking (3.6u, b) and (4.2), we obtain 
[cf. (3.2)] 

wherein A, = dA1/d7, and summation over the vertically ordered, alternative signs 
and an error factor of 1 +O(e2) are implicit. Invoking 69/rYA: = 0, we obtain [cf. 
( 3 4 1  

(4.4) 
A 

= BI,-ij = B,, 
A1 
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where B, is given by (3 .10~) .  Using (4.4) to eliminate A, and A: from (4.3), invoking 
(3.6a, b) and (3.7) for C with c = U therein, which then reduces to C,, and introducing 
the real variables R(7) and 0(7) through the transformat.ion 

A, = R eiB, 
we obtain (after some reduction) 

(4.5) 

9' = E ~ ~ C . , , I @ - - P + ) ~ ~ - ~ ( ~ ? ~ + R ~ ~ ~ - / ~ R ~ - Y R ~ ) ,  ( 4 4  

where y = sgnC, (y = C, if IC,l is omitted in (4.lb), (4.2) and (4.6)). We note that 
(4.5), in conjunction with ( 4 . 1 ~ )  and (4.4), implies 

(4.7a, b) 
- 

ikq = eR(7) cos#+e2B, R2(7) cos24, # = k ( z -  Ut )+0(7) .  

Invoking M/SR = 0 and S9 ' /S0  = 0 and introducing w = 8, we obtain 

fi+PR+2yR3-Rw2 = 0, R23+2Rl?o = 0, 8 = W ,  (4.8a, b,  C) 

which admit the first integrals 

l?2+/9R2+yR4+M2R-2 = E ,  Raw = M (4.9a, b)  

(which also may be inferred directly from the invariance of 9 under translations of 
7 and 0). The parameters M and E, which are determined by the initial conditions, 
are analogues of angular momentum and energy for a particle in a central force field 
with the potential +(/3R2 + yR4). 

The progressive wave of $3 corresponds to a fixed point of (4.8) in an (R, A, w)-space 
(the coordinate 0 being ignorable) at which 

- 
(4.10a, b)  

[The present formulation for this progressive wave is valid only for w and P = O( 1) 
but may be rendered uniformly valid for all real c simply by replacing B, and C ,  by 
B and C, as given by (3.4) and (3.7).] The stability of this fixed point with respect 
to small perturbations of the form exp(h7) is determined by the characteristic 
equation 

It follows from (4.10b) and (4.11) that the fixed point is stable for all kA = O(e)  if 
C, > 0, but if C ,  < 0 it is stable if and only if 

k2A2 < $C,l-l [ 1 -(%)I uz-772 = O(e) .  
(4.12) 

The differential equations (4.8) are equivalent to Weissman's (1979) equations 
(3.02) and (3.03). Weissman takes kh, = co but includes capillarity, so that his 
counterpart of C ,  may have either sign (see Appendix A). He obtains the first integral 
( 4 . 9 ~ )  in the special case M = 0, for which A, may be taken to be real. The fixed 
points of ( 4 . 8 ~ )  in an (A,, A,)-plane then are at A, = A, = 0, which is a centre/saddle 
point (stable/unstable) for /9 2 0; A ,  = f (-!/By)+, A, = 0, which exist if and only 
if /3 and C ,  have opposite signs and are centres/saddle points for C, 2 0. The four 
possible forms of the trajectories (corresponding to the four possible sign pairings of 
/3 and y) are sketched in Weissman's figure 2. This special case also has been discussed 
by Drazin (1970) and Nayfeh & Saric (1972). Drazin imposes the Boussinesq 
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approximation [neglecting (p- - p + ) / ( p -  + p + )  except in the buoyancy term], which 
eliminates the possibility of second-harmonic resonance. After allowing for this 
difference and correcting what appears to be a typographical error (1  +4a2 should 
be 4+a2),  I find that his equation (41) is equivalent to ( 4 . 9 ~ )  above with M = 0 
therein. Nayfeh & Saric obtain results similar to those of Weissman for those two 
cases for which /3 and y have opposite signs. 

The general solution of (4.9) may be expressed in terms of elliptic integrals through 
the transformation 2 = R2, which yields 

= -w++z- /322-y23  = ~ ( 2 ) .  (4.13) 

(i) If /3 > 0 and y = 1, F(2) has two and only two positive zeros, and closed 

~(z,) > 0, z, = f[(~e+3m.f-/31, (4.14a, b)  

where 2, is the positive zero of F’. The modulational period (on the 7-scale) then is 
given by 

The character of these solutions depends on the disposition of the zeros of F ( 2 ) .  

trajectories in the (2, .@-plane exist, if and only if E > 0 and 

(4.15) 

where a > b > 0 > c are the zeros of F(Z) ,  and K is a complete elliptic integral of the 
first kind. 

(ii) If /3 < 0 and y = 1 ,  F has two and only two positive zeros, and closed 
trajectories exist, for all real E if and only if 

Jv,) > 0, 2, = i[lBI+(8”+3E)tl. (4.16a, b) 

(iii) If /3 > 0 and y = - 1, F(Z) has three positive zeros, and both closed and open 

F ( 2 J  > 0, F(2:) < 0, 2: = fv& ($-3E)f]. (4.17a, b,  c) 

The corresponding period is given by (4.15). 

trajectories exist, if E > 0 and 

The corresponding period is given by 

- - dZ 
[(a - 2) (b - 2) ( Z -  c)]f (a 

T = lCb (4.18) 

where a > b > c > 0 are the zeros of F ( 2 ) .  Otherwise, F has only one positive zero, 
and only divergent trajectories exist. 

(iv) If /3 < 0 and y = - 1, F has one and only one positive zero, and only divergent 
trajectories exist. 

We emphasize that, although the closed trajectories in the (2, e)-plane correspond 
to periodic R(T),  the period of R generally differs from that of 0 mod 2 x ,  as determined 
from (4.9b) and (4.8c), in consequence of which the trajectories in the (R,B)-plane 
are closed only for exceptional initial conditions.? 

Weak damping may be incorporated as in the last paragraph in 93 and leads to 
the equations of motion (polar coordinates are no longer advantageous) 

A, +2sA, + (/3+ 2ylA112) A,  = 0 (4.19) 

t It follows from Bertrand’s theorem (Goldetein 1980, $3.6) that closed R versus t9 orbits for 
a particle in a central force field exist for all initial conditions only for either linear (Hooke’s law) 
or inverse-square forces. 
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and its complex-conjugate, (4.19)*, where 

6 = (2€IC*ltkc,)-’D (4.20) 

is a dimensionless damping parameter that must be O( 1) for the damping to be weak: 
in the present context. The fixed points of (4.19) are at  either A, = A, = 0 or 
(All = (-/3/2y)i, A, = 0, as in the undamped case with M = 0. [It can be deduced 
from (4.19) and (4.19)* that &f = -26M, so that Weissman’s assumption that M = 0 
is replaced by the deduction that any initial value of M decays like exp ( - 2&).] The 
stability of these fixed points with respect to small perturbations of A, and AT of 
the form exp (A7) is determined by 

A2 + 26A +p+ 4ylAll2 I 2yAf2 A2+ 26A +p+ 4ylA112 

= (A2+  26A+/3+ 2yJAJ2) (A2 + 26A+P+ 6ylA,I2). (4.22) 

It follows that the fixed point at  A, = 0 is stable/unstable for fi 2 0, whilst that at  
lAll = (-/?/2y)f is stable/unstable for p 5 0. In brief, the locations of the fixed 
points and the stability criteria for weak damping remain as in Weissman’s special 
case (M = 0) of the undamped problem, whilst the centres/saddle points become 
stable/unstable spiral singularities. 

5. Resonant forcing 
We consider next the wave motion forced by flow over the sinusoidal bottom 

7, = a cos kx,  (5.1) 

on the assumption that c: = implies resonance between the sinusoidal 
bottom and a standing inferfacial wave). The displacement (5.1) of the lower 
boundary implies qo = {&&} = {!ja,!ja} in place of qo = 0 in (2.8), which, in turn, 
implies the addition of 

(c: = 

-lo% 4(:ik.u4 (PT331)l- 

to the Lagrangian (2.9) (it also implies the addition of higher-order terms, which 
prove to be negligible, and of the constant &a2, which hm no dynamical significance). 
Positing k ,  = (nk,O) and 

q,(t) = dnlk-1A,(7) (n = f 1, f2), 7 = EIC&C, t ,  (5.2a, b )  

in this augmented form of (2.9), introducing 

(5.3a, b ,  c )  

- -  
[note that B(5.3b) differs from /?(4.2)], where ct, U ,  u2 and C, are given by (3.6) and 
(3.7) with c = 0 therein, proceeding as in $4 on the hypothesis that a and p = O(l ) , t  
and choosing 

t It can be shown, by a parallel investigation of the appropriately rescaled problem, that the 
following analysis is uniformly valid for large a; however, the most interesting results are obtained 
for a = O( 1). 
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we obtain 

9 = c41C,l(p- -p+)gk-2[(A,+iaA,)(&-iaA:) 

- (a2+/3)A1A:-yAtA:2-(Al+A:)] .  (5.5) 

Invoking S9IGA: = 0 and S9/SA, = 0 ,  we obtain 

4+2iaA,+(8+2ylA,12) A, = - 1  (5.6) 

and its complex-conjugate, (5.6)*. It follows from (5.6) and (5.6)*, or directly from 
the invariance of 9 (5.5) under a translation of 7 ,  that 

I.d,12 +,9IA,I2 + y(A,I4 + A, +A: = H (5.7) 

is a constant of the motion, which may be identified as a dimensionless Hamiltonian 
(Appendix B). It follows from (5.7) that the forced motion is bounded for y = 1 but 
may diverge for y = - 1. 

Weak damping may be incorporated as in the last paragraphs in $53 and 4 and 
implies the introduction of 2S(A, + iaA,) on the left-hand sides of (5.6) and (5.6)* to 
obtain [cf. (4.19)] 

and its complex-conjugate, (5.8)*, where 6 is given by (4.20) with C, replaced by C, 
therein. 

The fixed points of (5.8) and (5.8)* in the X, Y , x ,  P(X+iY = A,) phase space 
are determined by X = Y = 0 and 

d, +2(S+ia) A, + (/3+ 2iaS+ 2ylA,I2) A, = - 1 (5.8) 

- 2aS bz+ ( / ? + ~ Y R ~ ) ~ ]  R2 = 1 (p = 21alS), tan8 = A, = R eie (5.9a, b, c) 
p + 2 y ~ 2 ,  

and correspond to a stationary wave. The resonance curve (locus of fixed points) 
determined by (5.9a) for y = 1 is plotted in figure 1. It has a maximum of R = 1/p 
at /3 = -2y/pa and is triple-valued for & < /? < p,", where & and /3C, are the upper 
and lower turning points determined by (see figure 2) 

pc = -2y(R:+$Ri4), (5.10a, b) 

The upper and lower turning points coalesce for p = pc, and the resonance curve is 
single-valued for p > pc. The resonance curve for y = - 1 is obtained from that for 
y = + 1 through the reflection /3-+-/3, but the division of this curve into stable and 
unstable segments (see below) is not invariant under this transformation. 

The stability of a particular fixed point with respect to small perturbations of A, 
and A: (or, equivalently, X and Y) of the form exp (A7)  is determined by 

16RB,(1-p2R:) = 1 (p < pc = 3i ~ 4 - 4  = 1.091). 

~2 + 2 ( ~ +  ia) A + B+ 2 i a ~  2YA: 
~2 + 2(6- ia) A + /?- 2 i a ~  2yA:2 

= A4 + 4SA3 + 2(2a2 + 2S2 +B) A2 + 46(2a2 +B) A + 4a2S2 +$ -4R4 = 0 
(B = /3+4yR2). (5.11) 

The necessary and sufficient conditions for stability (which requires that no root of 
(5.11) have a positive real part) are 

2 0. (5.12a, b,  c) 2 4(R4-a262), 2a2+B 2 0, or2+/?+- 

It can be shown that all of (5.12a, b,  c) are satisfied on the upper branch (p > &!) 
of the resonance curve for y = 1 and on the lower branch (/3 > p i )  for y = - 1, which 

R4 
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FIQURE 1. The resonance curves determined by ( 5 . 9 ~ ~ )  for y = 1 and p2 = 4a2S2 = &, t and 1.191 
(upper/middle/lower curve). The turning points coalesce for p = 1,191, and the resonance curves 
for p > 1.191 are single valued. The middle branch is unstable; in addition, that segment of the 
lower branch to the left of the Hopf-bifurcation point (see text) is unstable. The resonance curves 
for y = - 1 are obtained through those for y = 1 through the reflection p+-p, but the Hopf 
bifurcations (of which there may be 0, 1, 2 or 3) then are on the upper branch (see text). 

B 

therefore are stable (or, more precisely, comprise only stable fixed points). Equality 
in ( 5 . 1 2 ~ )  is attained at the turning points, and the middle branch of the resonance 
curve, which lies between these turning points and violates (5.12a), is unstable for 
either y = 1 or y = - 1 .  Equality in (5.12c), together with the satisfaction of 
(5.12a, b), corresponds to a Hopf bifurcation. Eliminating /3 between this equality and 
( 5 . 9 ~ )  and invoking the inequality (5.12b), we obtain 

[(a2+62)f+y(012+S2)-fR2]2 = 62f (R-2-4a2P)f, ( 5 . 1 3 ~ )  

R2 I R& < lal(a2+62)f, (5.13b) 

where the f sign in ( 5 . 1 3 ~ )  corresponds to the left/right (with respect to the peak) 
side of the resonance curve. The corresponding values of /3, if any, are given by 

PH = --012--4yRH--(a2+62)-1R4 H* (5.134 

The parametric evolution of the Hopf bifurcations may be elucidated by examining 
the intersections of the left- and right-hand sides of ( 5 . 1 3 ~ )  in 0 < R& < lo1l(a~+6~):. 
Considering y = 1 first, we find that there is one and only one such intersection if 
and only if la1 > a+, where a+ is determined by equality in (5.13b), which, in 
conjunction with (5.13a), implies (see figure 3)  

8 a 3 ( a 2 + 6 2 ) [ ~ + ( ~ 2 + 6 2 ) f ]  = 1 (01 = a+). (5.14) 
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FIGURE 2. The turning points determined by (5.10). The two turning points coalesce for 
p2 = 1.191 and disappear for$ > 1.191. 

Approximations for small and large S are 

a+ = 0.630[1-0.525S2+O(64)] (SJO), a+ - !3-1-&S-3+O(S-5) (Sf a). 
(5.15a, b )  

The entire lower branch of the resonance curve is unstable if la1 < a+. The Hopf 
bifurcation emerges from the lower turning point, p = p",, at la1 = a,, and the 
segment PH < p < p "  of the lower branch is stable (/3 <pH is unstable) for 
a+ < la1 < ,uc/2S. The resonance curve is single-valued and stablelunstable for 

>< BH if la( > ,uc/2S (it can be shown that a+ < ,uc/2S; see figure 3). 
The evolution of the Hopf bifurcations for y = - 1 is more complicated than 

for y = 1, and we consider only S 4 1 (the most interesting case) in detail. There 
then may be 0, 1, 2 or 3 intersections of the right-hand side of (5.13~) with the 
parabola represented by the left-hand side thereof within the range 
0 < RL < lal(a2+S2)f c a2+S2. There are no such intersections, and therefore no 
Hopf bifurcations, and all of the upper branch of the resonance curve is unstable, 
if la1 < ul - ,  where al- is the smaller value of la( for which ( 5 . 1 3 ~ )  has a double root 
and is approximated by 

a,- = 1.517[1-0.698S2+0(64)]. (5.16) 

A pair of Hopf bifurcations appears to  the left of the peak on the upper branch of 
the resonance curve for la1 > al-, and that segment of this branch between these two 
bifurcations is stable for al- < la1 < us- (see below). A third Hopf bifurcation 
emerges from the upper turning point to the right of the peak for la1 = u2-,  where 
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FIQURE 3. The lower curve gives the critical value of lal, a,, m determined by (6.14), at which a 
Hopf bifurcation first appears for y = 1. The upper curve gives the lower bound of la1 for a 
single-valued resonance curve. 

0 0.2 0.4 0.6 0.8 1 .o 
d 

FIQURE 4. The critical value of bI, 2 b , - ,  at which a Hopf bifurcation emerges from the upper 
turning point for y = - 1. 

a2- is that value of la1 for which the lower branch of the right-hand side of (5 .13~)  
intersects the left-hand side at RL = Ial(aa+P)! and is given by (see figure 4) 

(5.17 a) 

= (2S)-![l -+P+O(P)]. (5.17b) 
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1 1 I I -1 

I4 
FIGURE 5. The Hopf bifurcations for y = - 1, 8 = 0 (--), 0.25 (----) and 0.30 (-). The 

curves for 8 = 0.25 and 0.30 terminate at la1 = a,- (see text and figure 4). 

[It follows from ( 5 . 1 7 ~ )  that 2Sa2- < pc (2Sa2- = pc at 6 = 341s = 0.972), as is 
necessary for the existence of the turning point.] As la1 increases from a2-, this 
third bifurcation moves above the turning point to the peak and then down the 
resonance curve to the left of the peak, where it merges with the higher of the first 
two bifurcations for la1 = a3-, the larger value of la1 for which ( 5 . 1 3 ~ )  has a double 
root, which is approximated by 

a3- = (26)-4[l+0.236S+0(S2)]. (5.18) 

That segment of the resonance curve between the turning point and the third 
bifurcation (as well as that segment between the first two bifurcations) is stable for 
a2- < la1 < a3-, and all of that segment of the resonance curve between the turning 
point and the remaining bifurcation is stable for (a1 > a3-. 

Numerical calculations (see figure 5) reveal that al- < a+ < a3- for 
0 < 6 < 0.27, a2- < al- < a3- for 0.27 c S < 0.33, and a,- and as- disappear for 
S > 0.33. It follows that: the evolution described in the preceding paragraph is valid 
for 0 < 6 < 0.27 ; the first Hopf bifurcation appears at the turning point and there 
are 0/1/3/1 Hopf bifurcations for a < a2-/a2- < a < al-/al- < a < a3-/a > a3- 
if 0.27 c S c 0.33; there is a single Hopf bifurcation for a > a2- if 6 > 0.33. 

The Hopf-bifurcation points for 6 = 0 (of which there are 0/1 for la1 5 0.630 if 
y = 1 and 0/2 for la1 5 1.517 if y = - 1) are plotted in figure 6. The lower branch 
of & for y = - 1  approximates BH for y = 1 for a 2 2, and this remains true for 
moderate values of S, for which (5.13) yields 

PH - -a2-44ya-4+0(a-10,a-6S2) (a21.00). (5.19) 

It follows from this and the arguments in the preceding two paragraphs that all of 
the upper branch of the resonance curve becomes stable for a2 1. CQ independently of 
y and 6. 

The solution of (5.13) for S < is indistinguishable (on the scale of the plot) from 
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FIWRE 6. The Hopf bifurcations determined by (5.13) for 6 = 0 (-) and 1 (---) and y = + 1  
(lower/upper curves). The curves for y = 1 terminate at la1 = a, (see text and figure 3). The curve 
for y = -1  and 6 = 0 has a branch point at la( = a,- = 1.517). The curve for y = -1 and 6 = 1 
terminates at la1 = a2- (see text and figure 4). 

that for S = 0 for y = 1 or along the lower branch for y = - 1, and this remains true 
for S 6 1 except in relatively small neighbourhoods at the end points, but the upper 
branch for y = - 1 is a much more sensitive function of S (it disappears for S > 0.33), 
as is evident from the discussion in the penultimate paragraph and from figure 5. 

6. Numerical integrations 
Numerical integrations of (5.8) and (5.8)* were carried out for some eighty combina- 

tions of a, B, y and 6 with various initial conditions. The asymptotic (7 % 1) 
solutions appeared to be relatively insensitive to a and S insofar as both 6 and la18 
were small, and the principal variation was in B with y = 1 or - 1. In  that parametric 
range where stable fixed points exist for y = 1, the solutions terminated either on 
a fixed point or in a simple limit cycle, depending upon the initial conditions. Limit 
cycles also were obtained on the unstable sides of the Hopf bifurcation; some of these 
underwent period doubling and period quadrupling, but neither accumulation points 
nor chaotic motions were found. For y = - 1, simple limit cycles were obtained in 
a narrow parametric window on the unstable side of the Hopf bifurcation ; all other 
solutions diverged in the absence of stable fixed points. 

I4 
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Appendix A. Surface tension 

a is 

Combining (2.2) and (3.1) in (A l ) ,  averaging over x, and subtracting the result from 
(3.2), we obtain 

This implies the substitution of 

The potential energy per unit area (in the x-plane) due to a uniform surface tension 

v = a([l+(V?))2]f-l} = a[:(v?#-Q(V7)4+ ...I. (A 1) 

Y = Y(3.2)-~~(&+4.42,-$4:). (A 2) 

(A 3) 

in place of (3.4), ( 3 . 6 ~ )  and (3.7); summation over the vertically ordered, alternative 
signs is implicit in (A 3) and (A 5). 

The denominator of B is no longer positive-definite and vanishes for that value 
of k a t  which the second harmonic of an interfacial gravity-capillary wave of 
infinitesimal amplitude resonates with the corresponding fundamental (cf. Nayfeh t 
Saric 1972; Weissman 1979). The scaling adopted in (4.1) is inappropriate, and the 
stability problem must be reformulated, in some neighbourhood of this resonance. 
Moreover, the parameter C may be negative over a wider parametric range, including 
kh, = co, than for a = 0. It should be observed, however, that the resonance is 
rather weak if p- -p+ < p- + p + .  

Appendix B. Hamiltonian formulation 
The usual formalism for the transformation from a Lagrangian to a Hamiltonian 

formulation (Goldstein 1980, $8.1) for a dynamical system may be placed in the 
complex form 

H =  P,&:+P:Q,-L, (B la ,  b )  
aL 

pfl = q, 
where P, and Qfl are complex, canonically conjugate coordinates. 

Recasting (5.5) in the form 

9 = 4C0l(p- -p+)gk-% A,  = &, 

aL 
P = = &+ia&, 

H = PP* +ia(P&*-P*&) + (az +/3) &&* +yQ2Q*z+ Q + &*. (B 5 )  
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The counterparts of (5.6) and (5.6)* are 

aH 
t$ = - = P-iaQ. 

ap* 

It follows from (B 6) that dH/dt = 0 and hence that H is a constant of the motion. 
Substituting (B 2b) and (B 4) into (B 5), we obtain (5.7). 
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